Learning Compact Convolutional Neural Networks with Nested Dropout
نویسندگان
چکیده
Recently, nested dropout was proposed as a method for ordering representation units in autoencoders by their information content, without diminishing reconstruction cost (Rippel et al., 2014). However, it has only been applied to training fully-connected autoencoders in an unsupervised setting. We explore the impact of nested dropout on the convolutional layers in a CNN trained by backpropagation, investigating whether nested dropout can provide a simple and systematic way to determine the optimal representation size with respect to the desired accuracy and desired task and data complexity.
منابع مشابه
On the Compactness, Efficiency, and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task
Deep convolutional neural networks are powerful tools for learning visual representations from images. However, designing efficient deep architectures to analyse volumetric medical images remains challenging. This work investigates efficient and flexible elements of modern convolutional networks such as dilated convolution and residual connection. With these essential building blocks, we propos...
متن کاملTowards dropout training for convolutional neural networks
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this...
متن کاملMax-Pooling Dropout for Regularization of Convolutional Neural Networks
Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks, dropout is known to work well in fully-connected layers. However, its effect in pooling layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly picking activation based on a multinomial distribution at training time. In light of this insight, we advoc...
متن کاملDeep Reinforcement Learning with Regularized Convolutional Neural Fitted Q Iteration
We review the deep reinforcement learning setting, in which an agent receiving high-dimensional input from an environment learns a control policy without supervision using multilayer neural networks. We then extend the Neural Fitted Q Iteration value-based reinforcement learning algorithm (Riedmiller et al) by introducing a novel variation which we call Regularized Convolutional Neural Fitted Q...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1412.7155 شماره
صفحات -
تاریخ انتشار 2014